139 research outputs found

    Electron density retrieval from truncated Radio Occultation GNSS data

    Get PDF
    This paper summarizes the definition and validation of two complementary new strategies, to invert incomplete Global Navigation Satellite System Radio-Occultation (RO) ionospheric measurements, such as the ones to be provided by the future EUMETSAT Polar System Second Generation. It will provide RO measurements with impact parameter much below the Low Earth Orbiters' height (817 km): from 500 km down approximately. The first presented method to invert truncated RO data is denoted as Abel-VaryChap Hybrid modeling from topside Incomplete Global Navigation Satellite System RO data, based on simple First Principles, very precise, and well suited for postprocessing. And the second method is denoted as Simple Estimation of Electron density profiles from topside Incomplete RO data, is less precise, but yields very fast estimations, suitable for Near Real-Time determination. Both techniques will be described and assessed with a set of 546 representative COSMIC/FORMOSAT-3 ROs, with relative errors of 7% and 11% for Abel-VaryChap Hybrid modeling from topside Incomplete Global Navigation Satellite System RO data and Simple Estimation of Electron density profiles from topside Incomplete RO data, respectively, with 20 min and 15 s, respectively, of computational time per occultation in our Intel I7 PC.Peer ReviewedPostprint (published version

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Altimetry Using GPS-Reflection/Occultation Interferometry

    Get PDF
    A Global Positioning System (GPS)- reflection/occultation interferometry was examined as a means of altimetry of water and ice surfaces in polar regions. In GPS-reflection/occultation interferometry, a GPS receiver aboard a satellite in a low orbit around the Earth is used to determine the temporally varying carrier- phase delay between (1) one component of a signal from a GPS transmitter propagating directly through the atmosphere just as the GPS transmitter falls below the horizon and (2) another component of the same signal, propagating along a slightly different path, reflected at glancing incidence upon the water or ice surface

    Feasibility of GNSS-R ice sheet altimetry in Greenland using TDS-1

    Get PDF
    Radar altimetry provides valuable measurements to characterize the state and the evolution of the ice sheet cover of Antartica and Greenland. Global Navigation Satellite System Reflectometry (GNSS-R) has the potential to complement the dedicated radar altimeters, increasing the temporal and spatial resolution of the measurements. Here we perform a study of the Greenland ice sheet using data obtained by the GNSS-R instrument aboard the British TechDemoSat-1 (TDS-1) satellite mission. TDS-1 was primarily designed to provide sea state information such as sea surface roughness or wind, but not altimetric products. The data have been analyzed with altimetric methodologies, already tested in aircraft based experiments, to extract signal delay observables to be used to infer properties of the Greenland ice sheet cover. The penetration depth of the GNSS signals into ice has also been considered. The large scale topographic signal obtained is consistent with the one obtained with ICEsat GLAS sensor, with differences likely to be related to L-band signal penetration into the ice and the along-track variations in structure and morphology of the firn and ice volumes The main conclusion derived from this work is that GNSS-R also provides potentially valuable measurements of the ice sheet cover. Thus, this methodology has the potential to complement our understanding of the ice firn and its evolution.Peer ReviewedPostprint (published version

    The Impact of Inter-Modulation Components on Interferometric GNSS-Reflectometry

    Get PDF
    The interferometric Global Navigation Satellite System Reflectometry (iGNSS-R) exploits the full spectrum of the transmitted GNSS signal to improve the ranging performance for sea surface height applications. The Inter-Modulation (IM) component of the GNSS signals is an additional component that keeps the power envelope of the composite signals constant. This extra component has been neglected in previous studies on iGNSS-R, in both modelling and instrumentation. This letter takes the GPS L1 signal as an example to analyse the impact of the IM component on iGNSS-R ocean altimetry, including signal-to-noise ratio, the altimetric sensitivity and the final altimetric precision. Analytical results show that previous estimates of the final altimetric precision were underestimated by a factor of 1 . 5 ∼ 1 . 7 due to the negligence of the IM component, which should be taken into account in proper design of the future spaceborne iGNSS-R altimetry missions.This work was supported in part by the European Space Agency (ESTEC RFP/IPL- PTE/FE/yc/1157/2015) and in part by the Spanish Ministry of Economy and Competitiveness (ESP2015-70014-C2-2-R). We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)

    Scene setting for the ESA hydroGNSS GNSS-Reflectometry scout mission

    Get PDF
    HydroGNSS is a mission concept selected by ESA as a Scout candidate, and consists of a 40 kg satellite that addresses land hydrological parameters using the technique of GNSS Reflectometry, a form of bistatic L-Band radar using satnav signals as the radar source. The four targeted essential climate variables (ECVs) are of established importance to our understanding of the climate evolution and human interaction, and comprise of soil moisture, inundation / wetlands, freeze /thaw (notably over permafrost) and above ground biomass. The technique of GNSS Reflectometry shows potential over all geophysical surfaces for low cost measurement of ocean winds, ocean roughness, soil moisture, flood & ice mapping, and other climate and operational parameters. SSTL developed and flew the SGR-ReSI GNSS remote sensing instrument on the 160 kg UK TechDemoSat-1 (TDS-1) in July 2014 and, with sponsorship from ESA, collected data until TDS-1’s drag-sail was deployed in May 2019. TDS-1 was a precursor for NASA’s CYGNSS mission which uses the SGR-ReSI on its 8-microsatellite constellation for sensing hurricanes. The datasets from TDS-1 have been released via the MERRByS website, and include ocean wind speed measurements and ice extent maps from National Oceanography Centre’s C-BRE inversion. At the same time, researchers recognised the benefits of GNSS reflectometry over land, including the unique capability to sense rivers under forest canopies to a high resolution. HydroGNSS has been proposed for the ESA Scout mission opportunity by a SSTL and a team of partners with a broad range of experience in GNSS technology, GNSS-Reflectometry modelling and applications, and Earth Observation from GNSS-R measurements. The instrument takes significant steps forward from previous GNSS-R experiments by including capability in dual polarisation, dual frequency and coherent reflected signal reception, that are expected to help separate out ECVs and improve measurement resolution. The satellite platform is the 40 kg SSTL-Micro, which has improved attitude determination and a high data link to support the collection of copious quantities scientific data with a short time delay. HydroGNSS builds upon the growing GNSS-R knowledge gained from UK-DMC, TDS-1, and ORORO / DoT-1, and is anticipated to generate a new research data set in GNSS Earth Observation, specifically targeting land and hydrological applications. State of the art satellites that target soil moisture such as ESA SMOS and NASA SMAP are highly valued by scientists and operational weather forecasters, but will be expensive to replace. As evidenced by TDS-1 and CYGNSS, HydroGNSS will be able to take GNSS-R measurements using GNSS signals as a radar source, reducing the size of the satellite platform required. The forward scatter L-band nature of the measurement means that they are complementary to other techniques, and HydroGNSS brings further new measurement types compared to TDS-1 and CYGNSS. The small size and low recurring cost of the HydroGNSS satellite design opens the door to a larger constellation that can further improve spatial and temporal global hydrological measurements to an unprecedented resolution, invaluable to the better understanding of our climate

    Surface reflectivity over Hudson Bay retrieved from TDS-1 mission data

    Get PDF
    In times of a changing climate and the resulting uncertain consequences for nature and society, a special interest is focused on the large-scale recording of sea ice. Among the existing remote sensing methods, reflected Global Navigation Satellite System (GNSS) signals could play an important role in fulfilling this task. Within this project the sensitivity of GNSS reflection data to sea ice properties is evaluated. Estimates of sea ice reflectivity are derived from the ratio of reflected to direct signal power. It is expected that reflectivity of GNSS signals over smooth sea ice is decreasing with increasing sea ice thickness. The surface's reflectivity depends on the sea ice permittivity, i.e. its dielectric property, its roughness and the signal penetration into the ice body. The signals studied here were recorded in the years 2015 and 2016 by the TechDemoSat-1 (TDS-1) satellite. The TDS-1 payload includes a down-looking left-handed circular polarized antenna with high gain peak to acquire the Earth reflected signal. Another hemispherical up-looking right-handed circular polarized antenna was used to receive direct signal. The data is provided by the manufacturer SSTL and the reflection events were further pre-processed by IEEC to derive georeferenced power values. The project focuses on the signals' link budget to apply necessary corrections. The influence of the attitude uncertainty on gain calculation of the nadir antenna was examined and high nadir angles were filtered. Corrections of antenna gain and Free-Space Path Loss (FSPL) have been applied. The reflectivity was calculated from the corrected power using the data of the upand down-looking links. The differences in FSPL requires a correction of the reflected signal up to +6 dB with respect to the direct signal power level, with the loss increasing in magnitude towards higher incidence angles. The antenna gain correction has to account for the difference between a >13 dB peak value of the high-gain nadir antenna and a 4 dB peak value of the hemispherical zenith antenna. The retrieved reflectivity values are compared to model predictions based on Fresnel coefficients. The relation of reflectivity to sea ice thickness is investigated using a sea ice thickness product of the Soil Moisture and Ocean Salinity (SMOS) satellite of the European Space Agency (ESA). First insights into observations over Hudson Bay indicate that retrieved reflectivity decreases as sea ice increases in thickness. These preliminary results show that the developed approach is promising. Further investigations are needed to account for the dependence on surface roughness. Many studies show the potential of spaceborne GNSS-Reflectometry (GNSS-R) to complement existing remote sensing systems cost-effectively with global coverage
    corecore